Diketahuisuatu barisan geometri yang hasil perkalian lima suku pertamanya adalah -1. Jika jumlah tiga suku pertama dan jumlah empat suku pertama barisan tersebut berturut-turut adalah -3 dan − 5 2 , -\\frac{5}{2}, − 2 5 , maka suku keduanya adalahContoh Soal Barisan Aritmatika – Grameds pasti sudah tidak asing dengan materi Barisan dan Deret Aritmatika yang masuk pada mata pelajaran Matematika? Yap, materi ini umumnya mulai dipelajari di kelas 11 semester genap. Materi Barisan dan Deret Aritmatika pasti akan dibahas bersamaan dengan Barisan dan Deret Geometri. Bahkan lebih lanjutnya, materi ini juga dapat keluar di soal-soal CPNS lho yang tentunya dengan tingkat kesulitan yang lebih. Untuk mempelajarinya, Grameds dapat membaca ulasan materi, pemahaman rumus, beserta contoh soal barisan aritmatika yang biasanya terdapat di buku-buku latihan soal. Lantas, bagaimana jika contoh soal barisan aritmatika di buku-buku latihan soal tersebut sudah “habis” dibahas? Nah, jangan khawatir, sebab pada artikel berikut ini akan membahas contoh-contoh soal barisan aritmatika yang dapat Grameds simak dan kerjakan! 30 Contoh Soal Barisan Aritmatika Essay10 Contoh Soal Barisan Aritmatika Beserta PembahasannyaContoh Soal 1Contoh Soal 2Contoh Soal 3Contoh Soal 4Contoh Soal 5Contoh Soal 6Contoh Soal 7Contoh Soal 8Contoh Soal 9Contoh Soal 10 Suku ke-40 dari barisan 7, 5, 3, 1, … adalah … Suku pertama dari barisan aritmatika adalah 3 dan bedanya = 4, suku ke-10 dari barisan aritmatika tersebut adalah … Carilah suku ke-100 dari barisan aritmetika 2, 5, 8, 11, … Tentukan suku ke-21 dari barisan aritmetika 17, 15, 13, 11,… Tentukan suku ke-8 dan ke-20 dari barisan –3, 2, 7, 12, …. Diketahui barisan aritmetika –2, 1, 4, 7, …, 40. Tentukan banyak suku barisan tersebut. Diketahui suatu barisan aritmatika suku pertamanya adalah 7 dan suku ke-15 adalah 63. Tentukan beda barisan aritmatika tersebut! Suku pertama dari barisan aritmatika adalah -2 dan bedanya 5, tentukan suku ke-12 dari barisan aritmatika tersebut adalah … Suku ke -3 dan suku ke -16 dari barisan aritmatika adalah 13 dan 78. Tentukanlah suku pertama dan bedanya. Rumus suku ke-n dari barisan 5, –2, –9, –16, … adalah … Diketahui barisan bilangan dengan suku ke-n berbentuk Un = n2 – 2n. Tuliskan 5 suku pertama dari barisan tersebut. Diketahui barisan bilangan 4, 7, 12, 19, …. Tentukan rumus suku ke-n. Diketahui barisan bilangan 4, 7, 12, 19, …. Suku keberapa dari barisan tersebut yang bernilai 199? Suku ke-15 dari barisan bilangan 2, 5, 8, 11, 14, … adalah… Suku ke-45 dari barisan bilangan 3, 7, 11, 15, 19, … adalah… Suku ke-50 dari barisan bilangan 20, 17, 14, 11, 8, …. adalah…. Rumus suku ke-n barisan aritmatika 94, 90, 86, 82, …. adalah…. Suatu barisan 1, 4, 7, 10, … memenuhi pola Un = an + b. Suku ke 10 dari barisan itu adalah Suatu barisan 2, 5, 10, 17, …. memenuhi pola Un = an2 + bn + c. Suku ke 9 dari barisan itu adalah…. Barisan 2, 9, 18, 29, … memenuhi pola Un = an2 + bn + c. Suku ke berapakah 42? Suku ke 20 dari barisan 1, 1, 1, 2, 1, 3, 1, 4, 1, …. adalah Diketahui barisan aritmetika 1, 3, 5, 7, …. un = 225. Tentukan banyaknya suku n. Si Dadap berhasil lulus ujian saringan masuk PT Perguruan Tinggi. Sebagai mahasiswa, mulai 1 Januari 2008 ia menerima uang saku sebesar Rp. untuk satu triwulan. Uang saku ini diberikan setiap permulaan triwulan. Untuk setiap triwulan berikutnya uang saku yang diterimanya dinaikkan sebesar Rp. Berapa besar uang saku yang akan diterima si Dadap pada awal tahun 2011? Diketahui suku ke-1 dari barisan aritmetika adalah 6 dan suku kelimanya 18, tentukan bedanya. Dalam suatu gedung pertunjukan disusun kursi dengan baris paling depan terdiri dari 12 kursi, baris kedua berisi 14 kursi, baris ketiga berisi 16 kursi, dan seterusnya. Banyaknya kursi pada baris ke-20 adalah … Suku ke-2 dari suatu deret aritmatika adalah 5. Jika jumlah dari suku ke-4 dan suku ke-6 dari deret tersebut adalah 28, maka suku ke-9 adalah ….. Suku ke-10 dan suku ke-14 dari barisan aritmetika berturut-turut adalah 7 dan 15. Tentukan suku pertama, beda, dan suku ke-20 barisan tersebut. Diketahui barisan aritmetika –2, 1, 4, 7, …, 40. Tentukan banyak suku barisan tersebut. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah …. Suku pertama suatu barisan adalah 4, sedangkan suku umum ke-n untuk n > 1 ditentukan dengan rumus Un = – 5. Suku ke-3 adalah … 10 Contoh Soal Barisan Aritmatika Beserta Pembahasannya Contoh Soal 1 Carilah suku ke-100 dari barisan aritmetika 2, 5, 8, 11, … Pembahasan a = 2 b = u2 – u1 = 5 – 2 = 3 n = 100 un = a + n – 1b un = 2 + 100 – 13 = 2 + 99 x 3 = 299 Contoh Soal 2 Diketahui barisan aritmetika 1, 3, 5, 7, …. un = 225. Tentukan banyaknya suku n. Penyelesaian a = 1, b = 2, un = 225 un = a n – 1b 225 = 1 + n – 12 = 1 + 2n – 2 226 = 2n n = 113 Contoh Soal 3 Si Dadap berhasil lulus ujian saringan masuk PT Perguruan Tinggi. Sebagai mahasiswa, mulai 1 Januari 2008 ia menerima uang saku sebesar Rp. untuk satu triwulan. Uang saku ini diberikan setiap permulaan triwulan. Untuk setiap triwulan berikutnya uang saku yang diterimanya dinaikkan sebesar Rp. Berapa besar uang saku yang akan diterima si Dadap pada awal tahun 2011? Penyelesaian Triwulan ke-1 u1 = a = Rp. Triwulan ke-2 u2 = a + b = Rp. dst Jadi b = Pada awal tahun 2011 telah dipakai kuliah selama 3 tahun atau 12 triwulan, berarti u12 = a + 12 – 1b = + 11 x = Jadi besarnya uang yang akan diterima si Dadap pada awal tahun 2011 adalah Rp. Contoh Soal 4 Diketahui suku ke-1 dari barisan aritmetika adalah 6 dan suku kelimanya 18, tentukan pembedanya. Penyelesaian Diketahui a = 6, dan U5 = 18 Un = a + n – 1 b U5 = 6 + 5 – 1 b 18= 6 + 4b 4b = 12 b = 3 Jadi pembedanya adalah 3. Contoh Soal 5 Tentukan suku ke-21 dari barisan aritmetika 17, 15, 13, 11,… Penyelesaian Diketahui a = 17, b = -2, dan n = 21, maka U21 = 17 + 21-1-2 = -23 Jadi, suku ke-21 dari barisan aritmatika tersebut adalah -23 Contoh Soal 6 Suku ke-40 dari barisan 7, 5, 3, 1, … adalah … Penyelesaian Diketahui a = 7 b = –2 Ditanya 𝑈40 ? Jawab 𝑈𝑛 = 𝑎 + 𝑛 − 1 𝑏 𝑈40 = 7 + 40 − 1 −2 = 7 + 39 x -2 = 7 + -78 = – 71 Jadi, suku ke-40 barisan aritmatika tersebut adalah –71. Contoh Soal 7 Rumus suku ke-n dari barisan 5, –2, –9, –16, … adalah … Pembahasan Diketahui a = 5 b = –7 Ditanya rumus suku ke-n barisan aritmatika tersebut = ? Jawab 𝑈𝑛 = 𝑎 + 𝑛 − 1 𝑏 = 5 + 𝑛 − 1−7 = 5 − 7 𝑛 + 7 = 12 − 7 𝑛 Jadi, rumus suku ke-n barisan aritmatika tersebut adalah 𝑈𝑛 = 12 − 7𝑛 Contoh Soal 8 Dalam suatu gedung pertunjukan disusun kursi dengan baris paling depan terdiri dari 12 kursi, baris kedua berisi 14 kursi, baris ketiga berisi 16 kursi, dan seterusnya. Banyaknya kursi pada baris ke-20 adalah … Pembahasan Diketahui a = 12 b = 2 Ditanyakan 𝑈20 ? Jawab 𝑈𝑛 = 𝑎 + 𝑛 − 1𝑏 𝑈20 = 12 + 20 − 12 = 12 + 19 . 2 = 12 + 38 = 50 Jadi, banyaknya kursi pada baris ke-20 adalah 50 kursi Contoh Soal 9 Jumlah ke-10 dari barisan 3, 5, 7, 9, ….adalah … Penyelesaian a = 3, b = 2, U10 = a + 9b U10 = 3 + 18 = 21 Contoh Soal 10 Suatu barisan 2, 5, 10, 17, …. memenuhi pola Un = an2 + bn + c. Suku ke 9 dari barisan itu adalah… Penyelesaian Diketahui Barisan 2, 5, 10, 17, … 𝑈𝑛 = 𝑎𝑛2 + 𝑏𝑛 + 𝑐 Ditanyakan 𝑈9 = ⋯ ? Jawab 𝑈𝑛 = 1𝑛2 + 0𝑛 + 1 𝑈𝑛 = 𝑛2 + 1 𝑈9 = 92 + 1 𝑈9 = 82 Nah, itulah ulasan mengenai beberapa contoh soal barisan Aritmatika pada mata pelajaran Matematika. Setelah menyimak soal dan pembahasannya, apakah Grameds sudah paham bahwa barisan dan deret dalam Aritmatika itu berbeda? Baca Juga! Rumus Luas Permukaan Kubus dan Soal-Soalnya Rumus Diameter Lingkaran Beserta Soal dan Pembahasannya Rumus Luas Permukaan Limas dan Contoh Soalnya Rumus dan Soal Operasi Perkalian Bilangan Bulat Rumus, Perluasan, dan Contoh Soal Turunan Fungsi Trigonometri Rumus Sumbu Simetri Beserta Soal dan Pembahasan Rumus dan Contoh Soal Jaring-Jaring Balok Rumus Volume Balok dan Contoh Soalnya Rumus Bola Volume, Luas Permukaan, dan Contoh Soalnya ePerpus adalah layanan perpustakaan digital masa kini yang mengusung konsep B2B. Kami hadir untuk memudahkan dalam mengelola perpustakaan digital Anda. Klien B2B Perpustakaan digital kami meliputi sekolah, universitas, korporat, sampai tempat ibadah." Custom log Akses ke ribuan buku dari penerbit berkualitas Kemudahan dalam mengakses dan mengontrol perpustakaan Anda Tersedia dalam platform Android dan IOS Tersedia fitur admin dashboard untuk melihat laporan analisis Laporan statistik lengkap Aplikasi aman, praktis, dan efisien Barisanbilangan : 1, 4, 9, 16, .maka . U. 1 = 1 = (1 x 1) U. 2 = 4 = (2 x 2) U. 3 = 9 = (3 x 3) U. 4 = 16 = (4 x 4) . U. n = (n x n) = n 2. UNIVERSITAS GUNADARMA Suatu barisan Aritmetika diketahui U. 2 = 9 dan U. 5 = 24. Tentukan a) Suku pertama dan bedanya b) Suku ke-25 6. Tentukan rumus suku ke-n dari barisan aritmetika jika diketahui
Hai Teguh, terimakasih sudah bertanya Kaka bantu jawab ya Dik 1, 7, 16, ... dan Un = an² + bn + c Dit U100? Jawab 1, 7, 16, ... -> a + b + c = U1 = 1 6 9 -> beda tingkat ke- 1, 3a + b = 6 3 -> beda tingkat ke- 2, 2a = 3 2a = 3 a = 3/2 ... 1 Substitusikan persamaan 1 ke dalam 3a + b = 6 33/2 + b = 6 9/2 + b = 6 b = 6 - 9/2 b = 3/2 ... 2 Substitusikan persamaan 1 dan 2 ke dalam a + b + c = 1 3/2 + 3/2 + c = 1 3 + c = 1 c = 1 - 3 c = -2 Substitusikan persamaan 1, 2, dan 3 ke dalam Un = an² + bn + c Un = 3/2n² +3/2n + -2 Un = 3/2n² +3/2n - 2 U100 = 3/2100² + 3/2100 - 2 U100 = 15000 + 150 - 2 U100 = 15148 Jadi, suku ke- 100 adalah 15148 Semoga jawabannya membantu ya Ÿ˜Š
1 Diketahui barisan bilangan 1, 3, 5, 7, 9, 11, 13, 15. Tentukan banyaknya suku barisan dalam barisan bilangan tersebut! Misalnya, dalam suatu barisan memiliki suku pertama, yaitu 2. Suku pertama disimbolkan dengan U1 atau a, lalu di suku kedua (U2), yaitu 5. Kemudian, suku ketiga (U3) adalah 8 dan seterusnya.
Halo teman belajar ajar hitung... hari ini kita mau latihan soal tentang pola bilangan ya.. yuk kita mulai...Oh iya, mulai sekarang kalian bisa pelajari materi ini melalui youtube ajar hitung, linknya di bawah ini ya1. Diantara barisan bilangan berikut yang merupakan pola bilangan aritmatika adalah...a. 8, 4, 2, 1, ½ b. 1, 4, 9, 16, ...c. 2, 4, 6, 8, ...d. 1, ½ , ¼ , 1/8JawabPola aritmatika ditandai dengan beda b yang sama. Makau2 – u1 = u3 – u2Mari kita hitung satu per satu dari pilihan di atasPilihan a, 4 – 8 ≠ 2 – 4Pilihan b, 4 – 1 ≠ 9 – 4Pilihan c, 4 – 2 = 6 – 4 Jawaban yang tepat Suku ke-6 dari pola bilangan persegi yang dimulai dari 1 adalah...a. 12b. 18c. 30d. 36JawabPola bilangan persegi dimulai dari 1 adalah12, 22, 32, 42, 52, 62, ...Maka suku ke-6 nya adalah 62 = 36Jawaban yang tepat Di antara barisan berikut yang merupakan aritmatika turun adalah...a. 3, 5, 7, 9, 11, 13, ...b. -10, -7, -4, -1, 2, 5, 8, ...c. 10, 7, 4, 1, -2, -5, -8, ...d. -13, -11, -9, -7, -5, -3, ...JawabAritmatika turun jika memiliki beda b yang bernilai negatif. Pada soal, pilihan C memiliki beda yang bernilai c, 7 – 10 = 4 – 7 = -3Jawaban yang tepat Di antara barisan berikut yang merupakan geometri naik adalah...a. 3, 6, 12, 24, 48, 96, ...b. 96, 48, 24, 12, 6, 3, ...c. 8, 4, 2, 1, ½ , ¼ , 1/8 , ...d. 3, 6, 12, 15, 18, ...JawabGeometri naik adalah jika nilai tiap suku makin naik. Pada pilihan ganda, pilihan A adalah geometri = u2/u1 = 6/3 = 12/6 = 2Jawaban yang tepat Perhatikan barisan bilangan berikut!..., ..., 54, 56, 58, 60. Bilangan yang tepat untuk mengisi titik-titik tersebut berturut-turut agar terbentuk pola bilangan genap adalah...a. 51, 52b. 50, 52c. 52, 53d. 52, 50JawabBarisan di atas adalah barisan aritmatika dengan beda = 56 – 54 = 2Makau2 = 54 – 2 = 52u1 = 52 – 2 = 50Jawaban yang tepat Perhatikan barisan bilangan berikut!3, 6, 12, 24, ..., ...Dua bilangan selanjutnya dari barisan bilangan di atas adalah...a. 25 dan 26b. 32 dan 48c. 48 dan 60d. 48 dan 96JawabBarisan di atas adalah barisan geometri dengan rasio = u2/u1 = 6/3 = 2Maka suku selanjutnya adalah24 x 2 = 4848 x 2 = 96Jawaban yang tepat Dua bilangan yang sesuai agar barisan bilangan ½, ¼, ..., 1/16, ... menjadi benar adalah...a. 1/16 dan 1/6b. 1/16 dan 1/32c. 1/8 dan 1/32d. 1/8 dan 1/16JawabBarisan di atas adalah barisan geometri dengan rasio = u2 u1 = ¼ ½ = ¼ x 2/1 = 2/4 = ½ MakaSuku ke-3 = ¼ x ½ = 1/8Suku ke-5 = 1/16 x ½ = 1/32Jawaban yang tepat Beda dari setiap dua bilangan yang berurutan pada barisan bilangan 93, 87, 81, 75, ... adalah...a. -6b. -5c. 6d. 5JawabBeda = u2 – u1 = 87 – 93 = -6Jawaban yang tepat Perhatikan pola berikut dengan cermat!Bilangan ke-6 yang sesuai dengan pola di atas adalah...a. 10b. 12c. 14d. 16JawabU1 = 1 x 2 U2 = 2 x 2U3 = 3 x 2U4 = 4 x 2...U6 = 6 x 2 = 12Jawaban yang tepat Suatu deret aritmatika mempunyai suku pertama 3 dan suku kedelapan 24, maka jumlah sepuluh suku pertama dari deret tersebut adalah...a. 165b. 72c. 162d. 138JawabSuku pertama = a = 3U8 = 24S10 = ... ?U8 = a + n – 1 b24 = 3 + 8 – 1 b24 = 3 + 7b24 – 3 = 7b21 = 7bb = 21 7b = 3Selanjutnya baru cari jumlah 10 sukuS10 = n/2 2a + n – 1 b = 10/2 23 + 10 – 1 3 = 5 6 + 9 3 = 5 6 + 27 = 5 33 = 165Jawaban yang tepat Perhatikan barisan bilangan geometri berikut!2, 6, 18, 54, 162, ...Rasio dari barisan tersebut adalah...a. 1b. 2c. 3d. 1/3JawabRasio = u2/u1 = 6/2 = 3Jawaban yang tepat Barisan bilangan 2, 6, 12, 20, 30, ... dapat disebut sebagai pola bilangan...a. Segitigab. Persegic. Kuadratd. Persegi panjangJawabPola di atas adalah pola persegi yang tepat Empat bilangan berikutnya dari barisan bilangan 1, 3, 6, 10, ..., adalah...a. 15, 20, 26, 33b. 15, 21, 28, 36c. 16, 23, 31, 40d. 16, 34, 44, 56JawabJadi, empat bilangan selanjutnya adalah 15, 21, 28, dan 36Jawaban yang tepat Dua bilangan berikutnya dari barisan bilangan 2, 4, 10, 12, 18, 20, .... adalah...a. 22 dan 24b. 26 dan 28c. 28 dan 30d. 30 dan 32JawabJadi, dua bilangan selanjutnya adalah 26 dan yang tepat Dua suku berikutnya dari barisan bilangan 640, 160, 40, 10, ... adalah...a. 5, 2b. 2, ¼ c. 5/2, 5/4d. 5/2, 5/8JawabBarisan di atas adalah barisan geometri dengan rasio = u2/u1 = 160/640 = ¼ MakaSuku ke-5 = 10 x ¼ = 10/4 = 5/2Suku ke-6 = 5/2 x ¼ = 5/8Jawaban yang tepat Diketahui suatu barisan sebagai berikutx + 3, 16, 27 + x, ...Nilai x yang memenuhi agar suku barisan tersebut menjadi deret geometri adalah...a. 4b. 5c. 6d. 7JawabRasio deret geometri = u2/u1x + 3 27 + x = 16 1627x + x2 + 81 + 3x = 256x2 + 30x + 81 – 256 = 0x2 + 30x – 175 = 0x – 5x + 35 = 0x – 5 = 0x = 5atau x + 35 = 0x = -35Jawaban yang tepat Diketahui bariisan bilangan 8, 13, 16, 23, 28, ...Suku ke-45 adalah...a. 468b. 368c. 258d. 228JawabSuku pertama = a = 8Beda = b = u2 – u1 = 13 – 8 = 5Un = a + n – 1 bU45 = 8 + 45 – 1 5 = 8 + 44 5 = 8 + 220 = 228Jawaban yang tepat Selisih dari dua bilangan yang berurutan pada barisan bilangan 45, 40, 35, 30, ... adalah...a. -5b. -1c. 1d. 5JawabBeda = b = u2 – u1 = 40 – 45 = -5Jawaban yang tepat Pola bilangan 1, 4, 6, 4, 1 disebut juga dengan...a. Pola bilangan geometrib. Pola bilangan segitigac. Pola bilangan Fibonaccid. Pola bilangan segitiga PascalJawabPola bilangan 1, 4, 6, 4, 1 disebut juga dengan pola bilangan segitiga yang tepat Rasio dari barisan bilangan 125, 5, 1/5, 1/125, ... adalah...a. 1/125b. 1/25c. 1/15d. 1/5JawabRasio = r = u2/u1 = 5/125 = 1/25Jawaban yang tepat Diketahui barisan bilangan ..., -4. -3, -2, -1, 0, 1, 2, 3. Tiga bilangan sebelumnya adalah...a. 4, 5, 6b. 7, 6, 5c. -1, -2, -3d. -7, -6, -5JawabBeda dari deret aritmatika di atas adalah = -3 – -4 = 1MakaSuku ke-3 = -4 – 1 = -5Suku ke-2 = -5 – 1 = -6Suku ke-1 = -6 – 1 = -7Maka tiga suku sebelumnya adalah -7, -6, -5Jawaban yang tepat Agar urutan bilangan A, 8, 13, B, 23 membentuk pola bilangan aritmatika, maka bilangan yang tepat untuk A dan B adalah...a. 3 dan 18b. 10 dan 15c. 7 dan 20d. 6 dan 14JawabBeda deret aritmatika di atas adalah = 13 – 8 = 5MakaA = 8 – 5 = 3B = 13 + 5 = 18Jawaban yang tepat Di bawah ini yang termasuk pola bilangan ganjil adalah...JawabMari kita tuliskan deret dari pilihan ganda di atasPilihan a = 1, 4, 9Pilihan b = 2, 4, 6Pilihan c = 1, 3, 6Pilihan d = 1, 3, 5Jadi, yang termasuk pola bilangan ganjil adalah Dua bilangan berikutnya dari barisan bilangan 3, 4, 6, 9, ... adalah...a. 10 dan 15b. 13 dan 18c. 15 dan 20d. 18 dan 25JawabMaka, dua bilangan berikutnya adalah 13 dan yang tepat Diketahui barisan aritmatika dengan suku ke-2 = 96 dan suku ke-8 = 36. Suku ke-10 barisan aritmatika tersebut adalah...a. 26b. 16c. 20d. 6JawabU2 = 96a + n – 1 b = 96a + 2 – 1 b = 96a + b = 96 ..... persamaan idanU8 = 36a + n – 1 b = 36a + 8 – 1 b = 36a + 7b = 36 ..... persamaan iiSelanjutnya eliminasikan persamaan i dan iiSelanjutnya subtitusikan b = -10 ke persamaan a + b = 96a + b = 96a – 10 = 96a = 96 + 10a = 106Selanjutnya kita cari suku ke-10U10 = a + n – 1 b = 106 + 10 – 1 -10 = 106 + 9-10 = 106 – 90 = 16Jawaban yang tepat Diketahui suku kedua dan suku kelima dari suatu barisan geometri berturut-turut adalah 8 dan 64. Suku kedelapan barisan tersebut adalah...a. 128b. 256c. 512d. = 8ar n-1 = 8ar 2-1 = 8ar = 8 a = 8/r ... persamaan idanu5 = 64ar n-1 = 64ar 5-1 = 64 ar4 = 64 ... persamaan iiSubtitusikan persamaan i ke persamaan ii8/r . r4 = 648r3 = 64r3 = 64/8r = ∛8r3 = 8r = 2Karena r = 2 maka a = 8/r a = 8/2a = 4Selanjutnya tentukan suku ke-8U8 = ar n-1= 4 . 2 8-1= 4. 27 = 2 . 128 = 512Jawaban yang tepat Dua suku berikutnya dari pola bilangan 20, 17, 13, 8, ... adalah...a. 2, -5b. 2, 0c. 4, 2d. 3, 0JawabMaka dua suku selanjutnya adalah 2 dan -5Jawaban yang tepat Banyak kursi pada barisan pertama sebuah gedung aula adalah 12 kursi, dan barisan berikutnya selalu bertambah 5 kursi. Maka banyaknya kursi pada barisan ke-10 adalah...a. 27b. 57c. 52d. 62JawabSuku pertama = a = 12U2 = 12 + 5 = 17Beda = b = 5U10 = ....?U10 = a + n – 1 b = 12 + 10 – 1 5 = 12 + 9 5 = 12 + 45 = 57Jawaban yang tepat Dalam suku barisan geometri, diketahui suku pertamanya adalah 128 dan suku kelimanya adalah 8, maka rasio barisan tersebut adalah....a. ½ b. -2c. 2d. 1JawabSuku pertama = a = 128U5 = 8arn-1 = 812128 r 5-1 = 812128 r4 = 8r4 = 8/128r4 = 1/16r4 = 1/24 r = ½ Jawaban yang tepat Suku ke-10 barisan barisan bilangan pola segitiga adalah...a. 55b. 24c. 20d. 12JawabBarisan bilangan pola segitiga = 3, 6, 10, 15, 21, 28, 36, 45, 55Jadi, suku ke-10 adalah yang tepat yang kurang jelas dengan penjelasan disini dan kalian ingin belajar melalui video, kalian jangan lupa buat mampir di chanel youtube ajar hitung ya. Untuk soal ini kalian bisa klik link di bawah iniSampai disini ya adik-adik latihan kita hari ini... jangan lupa kunjungi selalu ajar hitung jika kalian mengalami kesulitan mengerjakan soal... selamat belajar adik-adik...
KhhvI. 35 218 479 139 304 413 271 371 88